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Symmetric 

Using the solution of the RISM equation for diatomic symmetric molecules 
outlined in a previous paper, the site-site radial distribution function (RDF) is 
calculated and compared with the Monte Carlo results and the numerical RDF 
of Lowden and Chandler. The RDF calculated here and the numerical RDF of 
Lowden and Chandler agree well at intermediate and high densities. At low 
density, however, both have systematic errors. The agreement between the RDF 
calculated here and the Monte Carlo results suggests that a simplified formula- 
tion of the RISM solution may serve well as a reference system in a perturbation 
theory for diatomic fluids. 
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1. I N T R O D U C T I O N  

In  a recent paper,  (1) it was shown that the R I S M  equat ion  for dia tomic 
symmetric  molecules could be solved using a W e i n e r - H o p f  factorization 

technique.  This technique in t roduced a func t ion  Q(r) which is related to 
the si te-si te  total correlat ion funct ion  in the following way: 

1 6 ( r -  L) 
Q'(r)  + -}--[ I Q(r  + L) - a ( r  - L) ] + 4~rpL 

= 2 J ' ( r )  - 4~rPfo~dt a ( t ) J ' ( t r  - t[) (1.1) 

Q(r) is a known  funct ion,  in terms of a set of parameters  O(- -~n)  for r 
greater than the hard  sphere diameter  R, and  is given by 

oo 
-/x,r Q(r)  = ~ Re(fne  ) (1.2) 

1 

1Matematisk Institut, Odense Universitet, Campusvej 55, 5230 Odense M., Denmark. Perma- 
nent address: Department of Mathematics, University of Melbourne, Parkville, Victoria 
3052, Australia. 

607 
0022-4715/81/0400-0607503.00/0 �9 1981 Plenum Publishing Corporation 



608 Morriss and Smith 

where 

and ?'n is the solution of 

A 

~;~ = i /  Q ( - ? ' . ) k ' ( ) ~ )  (1.3) 

sinXnL 
~ ( ~ ) - - - 1 +  X . ~ - 0  (1.4) 

As Q(r) is zero for r < 0, Q(r) remains only to be solved on the range 
0 < r < R .  

In Ref. 1 it was shown that it is possible to solve Eq. (1.1) for all values 
of L in the range 0 < L < R, which corresponds to all physically relevant 
cases or all possible diatomic intramolecular spacings. The solution ob- 

A 

tained expresses Q(r) in terms of the infinite set of parameters Q( -X , ) ,  so 
to obtain useful results it is necessary to truncate the infinite sum in Eq. 
(1.2). If this sum is truncated after N terms we obtain a system of 

A 

N coupled algebraic equations to solve for the parameters Q ( - X l )  . . . . .  
Q(-~N) .  These coupled algebraic equations are obtained by replacing k by 
-?'1 . . . . .  - X N in 

Q.(k) = 1 - 2~rP fo~ ) (1.5) 

In the following section the solution is formulated exactly, that is, with 
infinite sums rather than truncated finite sums. The results presented here 
are for truncation of Eq. (1.2) after three terms. The consequences of this 
truncation are investigated and discussed. 

The purpose of this paper is to compare the numerical site-site radial 
distribution functions of Lowden and Chandler (2) with those calculated 
here, and with the "exact" Monte Carlo results. The site-site radial distri- 
bution functions calculated using the method of Lowden and Chandler, (z) 
hereafter referred to as "Lowden's method," were obtained by determining 
the c(r) for which the functional 

1 fdk(2o[l+ (k)]e(k) IRISM = 402~ (0) (2r 

+ In(1 -- 2011 + ~ ( k ) ] ~ ( k ) ) }  (1.6) 

is minimal. The site-site direct correlation function c(r) is represented as a 
sum of basis functions chosen to allow e(r) to be discontinuous at r = R 
and discontinuous in first derivative at r = L and R -  L. For the case 
considered here, that is L = 1R, c(r) was chosen to be a cubic polynomial 
on each of the two ranges, 0 < r < L and L < r < R, with the restriction 
that c(r) be continuous at r = L. 



Correlation Functions for Diatomic Symmetric Molecules 609 

2. F O R M U L A T I O N  

Algebraically the simplest case to consider is when L (the intramolec- 
ular spacing) is half the hard sphere diameter R. Q(r) then has only two 
different functional forms: one on the range 0 < r < L and the other on 
the range L < r < R. Also the hard sphere diameter can be scaled out of 
the problem by choosing R to be unity, so we have R = I and L = ! 2. 

It was shown in Ref. 1 that the right-hand side (RHS) of Eq. (1.1) can 
be written as 

RHS = ~.(anr + bn) + Re ~ d . e  -ix~r (2.1) 
o 1 

where 

and for n > 1 

a o = 2 - 4~rps Q(t) 

b o = 4~rps tQ(t) 

(2.2) 

(2.3) 

( ~'n e - ia. ) a .  ---- - -  4 R e \  (2.4) 
/ 

E " 
~n (1 + i)tn)e -i~ (2.5) b n - - - 4 R e  ~ 

dn = - 4 f . d ( i X n )  (2.6) 

d(  i~) = s176176 rg( r) e-&r (2.7) 

The numerical scheme used to solve the coupled algebraic equations (1.5) is 
based on iterating the parameters 0 ( - ~ n ) ,  or equivalently the parameters 
~n- Therefore, in the algebra that follows we consider the parameters ~'n 
(n = 1,2, 3 . . . .  ) to be given, initially as a first guess and then as improve- 
ments on that first guess. Using Eq. (2.1) we can solve Eq. (1.1) for Q(r) 
yielding 

k (  an-bn)  + Re(Po e-ir) Q(r)= -anr + T 
o 

- 

+ R e  dn(i~ n a re  
1 qrp 

for 0 < r < �89 (2.8) 
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and 

~0(an) Q(r) = anr + -~ + b n 

,~ {[ i~e-ix" ~n-- ' -~ 
+ ~-~,Re + 

1 - - ~ .  n qrO 

for k < r <  1 

+ Re(iPoei/2e-ir) 

(1-iXne-iX"/2)d"] e - i x " r i - - - ~  } 

(2.9) 

At this stage we have Q(r) given in functional form but with unknowns 
ao, bo, Po, and dn still to be determined (note that a 0 and b 0 are real while 
both P0 and dn are complex). 

There are two continuity conditions which Q(r) must satisfy. Firstly 
that Q(r) be continuous at the hard core diameter 

Q(1 + ) = Q ( 1 - )  (2.10) 

and secondly that Q(r) have the required jump d!seontinuity, 

1 1 + Q ( 5 - ) = Q ( ~  ) + l / 2 r r o  (2.11) 

Along with Eqs. (2.2) and (2.3), Eqs. (2.10) and (2.11) can be used to 
eliminate the unknowns a 0, b 0, and P0. The algebra is tedious but straight- 
forward and therefore omitted. It should be noted, however, that it is not 
possible to solve these four equations simultaneously when 

(1 - 5frO)(1 + sin�89 + 8rr0cos�89 = 0 (2.12) 

This corresponds to a density 

1 1 + sin�89 
o = 7 "  5(1 + s i n k )  - 8 c o s  k - 1.25 (2.13) 

As a similarity in topology between the RISM approximation and the 
Percus-Yevick approximation has been suggested, O) a term of this form is 
expected. The Percus'Yevick theory for hard spheres contains a term 
(1 - ~ r o R 3 )  -2 which gives a maximum density of 6/vrR 3. This maximum 
density is unphysical as it corresponds to deforming the hard sphere 
particles so that they occupy the whole volume of the fluid (i.e., a specific 
volume of unity). The RISM maximum density is likewise unphysical and 
corresponds almost exactly to a specific volume of unity for the case we are 
considering. 

It now remains only to eliminate the parameters dn, and this can be 
achieved using the method outlined in Ref. 1, that is, 

- 2~ng(i~kn) 
an= O(_Xn) (2.14) 
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where 

6(s)=f~drexp(-sr) ~(a~r+bn)+Re dnexp(-iXnr) 
n = 0  1 

1 -- f ;+Larexp ( - - s r ) {  Q'(r)+ ~--~ [ Q(r + L) -  Q(r- L)]}  

(2.15) 

Again the algebra is tedious and therefore omitted. Substituting Eqs. (2.8) 
and (2.9) into Eq. (1.5) gives an infinite set of algebraic equations of the 
form 

0(--Xn) = f [  0 ( - -X, )  . . . .  ] (2.16) 

to solve for the parameters Q ( - ~ , ) .  Clearly in order to obtain useful results 
from this analytic solution the infinite set of equations must be truncated. 

3. NUMERICAL METHOD 

Truncating all the summations in the previous section after n = N 
( ~  m = N) gives N coupled algebraic equations to solve for Q ( - ~ 0 ,  
Q( -k2) ,  �9 �9 �9 Q ( - ~ )  of the form 

Q ( - ~ )  = f [  Q ( - ~ , ) , . . . ,  Q ( - ~ N ) ]  (3.1) 

The iteration procedure chosen must, in effect, find the fixed points of this 
equation. In Ref. 1 it was shown that as ]k[ ~ ~ ,  Q(k)-+ 1, so Q ( - ~ , )  = 1 
for all n can be chosen as a first guess. It is found that the fixed points of 
Eq. (3.1) are stable, so the following simple iteration procedure works very 
well when N = 2 and 3. 

1. Choose a first guess for Q ( - ? ~ )  for n = 1,N [i.e., Q(-?~,) = 1]. 
2. Calculate ~'n, an, bn, ao, bo, Po, dn" These coefficients specify Q(r) over 

its whole range. 
3. Calculate the Fourier transform, Q ( - ~ ) .  
4. Replace old Q ( - ? ~ )  by n ew  Q ( - ~ )  and return to  step 2. Repeat 

this procedure until the old Q ( - ? ~ )  equal the new Q(-?~n). 

The convergence of this iteration scheme is very rapid. For all densities 
considered p = 0.01 to 0.7 the coefficients calculated at step 2 are accurate 
to seven significant figures after only three iterations; each iteration requir- 
ing approximately 5 sec of ICL 1100 computer time. 

The existence of such a stable fixed point is most interesting as other 
problems in statistical mechanics of fluids (for example, the solution of the 
Ornstein-Zernike equation for hard spheres with Yukawa closure) require 
the solution of a similar set of coupled algebraic equations. (7) 
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4. SITE-SITE RADIAL DISTRIBUTION FUNCTION 

The numerical method of Perram (4) can be used to generate the 
site-site radial distribution function g(r). Returning to Eq. (1.1) it can be 
shown that the left-hand side (LHS) is zero for r > 3 /2  and for 1 < r 
< 3 /2  

oo 

L H S  = - 2 (anr + bn) - R e ( i e i P o  e - j r )  
o 

+ -~p 1--__-~n n e - i~ 'r  (4.1) 

The right-hand side of Eq. (1.1) can be shown to be 

RHS = -2rg(r) + ~(anr + bn) + ~ Re(d~e - i~ r )  
0 1 

+ 4~rpfrdt Q(t)(r - t)g(r - t) for r > R (4.2) 
dO 

Combining Eqs. (4.1) and (4.2), the site-site radial distribution function is 
given by 

g(r)-- ~ a, + + ~., ~ Re d, 1 +  ------~ 
o l 1 - X .  ~ 

+ ~rpf-~-~( 1 -iX")~ eiX./2)]e_iX.r}+lRe(ieiPoe_ir) 

and 

4vrp f ir  + ~ )l at Q(r - t)tg(t) for 1 < r < 3 /2  (4.3) 

0 1 

4~p ( r  dt + ~ Jl Q(r - t)tg(t) for r > 3/2.  (4.4) 

The continuity of g(r) at r = 3 /2  is assured by the condition that Q(r) be 
continuous at r = 1. 

The contact value of the site-site radial distribution function g(1 + ) 
can be obtained from Eq. (4.3) by simply setting r = I, but when the 
infinite sum is truncated, g(1 + )~O - 1 as O approaches zero. We shall return 
to this difficulty when comparing the various radial distribution functions. 
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5. MONTE CARLO SIMULATION 

The site-site radial distribution function for the RISM molecules 
considered here, was determined using the Monte Carlo method. (5~ The 
calculation was done for 144 molecules in a cubic box, with periodic 
boundary conditions applied to the center of mass of the molecule. Each 
move consisted of moving a RISM molecule at random both translationally 
and rotationally. The rotational movement was made using a three- 
dimensional rotation matrix for which the three angles were chosen at 
random. The bound on each move was chosen in order to ensure an 
acceptance rate of 30%-70%. 

Initially the molecules were arranged in a cubic lattice with all intra- 
molecular bonds parallel. In general 105 moves were allowed for the lattice 
to "melt" (5 • 105 for density 0.6) and the site-site radial distribution 
function averaged over the next 106 moves. 

6, RESULTS AND DISCUSSION 

The site-site radial distribution functions reported here are those using 
three poles (3P) of Eq. (1.2) (that is truncating all infinite sums in Section 2 
after n = 3). The site-site radial distribution functions calculated using 
Lowden's programs (6) agree well with those calculated using 3 poles, 
particularly at high densities. This can readily be seen in Figs. 1-3. These 
figures have been drawn with the intention of accentuating rather than 
diminishing the differences between the various site-site radial distribution 
functions. At a density of 0.6 the two radial distribution functions coincide 
almost exactly, so only the 3P one has been drawn. As the density is 
lowered the differences between the two radial distribution functions in- 
crease in a systematic way. The contact value g(1 + ) of the 3P radial 
distribution function is lower than Lowden's and its shoulder height g(1.5) 
is higher. However, at both places, contact and shoulder (and indeed 
generally), the 3P radial distribution function shows better agreement with 
the Monte Carlo results than Lowden's. A comparison of the 3P and Monte 
Carlo (MC) radial distribution functions shows that the 3P results have 
higher contact values (except at 0 = 0.6) and lower shoulder values. Also 
the long-range oscillations are out of phase. The differences between 3P 
and MC radial distribution functions are very similar to the differences 
between Percus-Yevick and Monte Carlo radial distribution functions for 
hard spheres, especially from the shoulder outwards. This is further evi- 
dence of the Percus-Yevick-like structure of the RISM approximation. 

As mentioned earlier the contact value of the radial distribution 
function contains a zero density divergence, when Eq. (1.2) is truncated 
after a finite number of terms. If for example, no poles are included the 
divergence remains as P0 --> 0-1. This divergence has dire consequences for 
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Site-site radial distribution function g(r) at a density of 0,4. 

low-density radial distribution functions, However, it is clear from Fig. 1 
that at a density of 0.2 no problems have emerged. In Fig. 4 we plot the 
contact value g(1 + ) as a function of density p and it can be seen that for 
densities,~less than 0.04 the contact value is negative and hence clearly 
unphysical. Below a density of 0.1 all radial distribution functions gener- 
ated using this method would be of doubtful accuracy. At a density of 0.2 
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Fig. 3. Site-site radial distribution function g(r) at a density of 0.6. 
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Fig. 4. 
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Contact value of the radial distribution function g(R + ). Solid curve is using no poles. 
O is 3P. �9 is from Lowden's program. �9 are the MC values. 

the rad ia l  d i s t r i b u t i o n  f u n c t i o n s  a p p e a r  qui te  r easonab le ,  as c a n  be  seen  in  
the  fo l lowing  table.  

C o n t a c t  va lue  g(1 + ) at  p = 0.2 

L o w d e n  0.887 
N o  poles  0.801 
2 poles  0.780 
3 poles  0.777 
M o n t e  Car lo  0.675 
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These results suggest that, at this density, the contact value obtained 
using Lowden's methods is poor. The contact value obtained using our 
method is in increasingly better agreement with the MC value as the 
number of poles increases. 

7. SUMMARY 

From a practical point of view the calculation of radial distribution 
functions using the formulation of Section 2 is only feasible for the case 
considered (i.e., L = �89 R). Changing the value of L requires the complete 
reformulation of Section 2. This is clearly a daunting task. However, if all 
the poles are neglected, which is a reasonable approximation at liquid 
densities, the routine solution for various values of L is relatively simple. 
Also as the analytic structure of the solution is now understood, it may be 
feasible to use a completely numerical approach to the calculation of Q(r), 
and hence the radial distribution function g(r). This approach would allow 
the same flexibility in density O and intramolecular spacing L as the 
programs of Lowden. 
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